fechar
fechar
Sua Rede do Amanhã
Sua Rede do Amanhã
Planeje seu caminho rumo a uma rede mais rápida, segura e resiliente projetada para os aplicativos e usuários aos quais você oferece suporte.
          Experimente a Netskope
          Get Hands-on With the Netskope Platform
          Here's your chance to experience the Netskope One single-cloud platform first-hand. Sign up for self-paced, hands-on labs, join us for monthly live product demos, take a free test drive of Netskope Private Access, or join us for a live, instructor-led workshops.
            Líder em SSE. Agora é líder em SASE de fornecedor único.
            Líder em SSE. Agora é líder em SASE de fornecedor único.
            A Netskope estreia como líder no Quadrante Mágico™ do Gartner® para Single-Vendor SASE
              Protegendo a IA generativa para leigos
              Protegendo a IA generativa para leigos
              Learn how your organization can balance the innovative potential of generative AI with robust data security practices.
                Modern data loss prevention (DLP) for Dummies eBook
                Prevenção Contra Perda de Dados (DLP) Moderna para Leigos
                Get tips and tricks for transitioning to a cloud-delivered DLP.
                  Livro SD-WAN moderno para SASE Dummies
                  Modern SD-WAN for SASE Dummies
                  Pare de brincar com sua arquitetura de rede
                    Compreendendo onde estão os riscos
                    Advanced Analytics transforms the way security operations teams apply data-driven insights to implement better policies. With Advanced Analytics, you can identify trends, zero in on areas of concern and use the data to take action.
                        Os 6 casos de uso mais atraentes para substituição completa de VPN herdada
                        Os 6 casos de uso mais atraentes para substituição completa de VPN herdada
                        Netskope One Private Access is the only solution that allows you to retire your VPN for good.
                          A Colgate-Palmolive protege sua “propriedade intelectual "” com proteção de dados inteligente e adaptável
                          A Colgate-Palmolive protege sua “propriedade intelectual "” com proteção de dados inteligente e adaptável
                            Netskope GovCloud
                            Netskope obtém alta autorização do FedRAMP
                            Escolha o Netskope GovCloud para acelerar a transformação de sua agência.
                              Let's Do Great Things Together
                              A estratégia de comercialização da Netskope, focada em Parcerias, permite que nossos Parceiros maximizem seu crescimento e lucratividade enquanto transformam a segurança corporativa.
                                Netskope solutions
                                Netskope Cloud Exchange
                                Netskope Cloud Exchange (CE) provides customers with powerful integration tools to leverage investments across their security posture.
                                  Suporte Técnico Netskope
                                  Suporte Técnico Netskope
                                  Nossos engenheiros de suporte qualificados estão localizados em todo o mundo e têm diversas experiências em segurança de nuvem, rede, virtualização, fornecimento de conteúdo e desenvolvimento de software, garantindo assistência técnica de qualidade e em tempo hábil.
                                    Vídeo da Netskope
                                    Treinamento Netskope
                                    Os treinamentos da Netskope vão ajudar você a ser um especialista em segurança na nuvem. Conte conosco para ajudá-lo a proteger a sua jornada de transformação digital e aproveitar ao máximo as suas aplicações na nuvem, na web e privadas.

                                      Netskope Threat Research Labs Technical Analysis: CloudSquirrel Malware

                                      Jul 27 2016
                                      Tags
                                      Cloud Best Practices
                                      Cloud Malware
                                      Cloud Security
                                      CloudSquirrel
                                      Netskope Threat Research Labs
                                      Tools and Tips
                                      Vulnerability Advisory
                                      Cloud-Squirrel-3

                                      Visual depiction of the life cycle of the Cloud Squirrel Attack

                                      Last week we posted an article, giving an overview about the CloudSquirrel malware campaign that takes advantage of multiple cloud apps throughout the kill chain with the intent to steal and exfiltrate user data. We will talk about technical details in this blog.

                                      Listed below are the activities seen in the CloudSquirrel malware campaign:

                                      • Uses a variety of cloud services to download its main payload.
                                      • Uses DropBox for its C&C (command and control) server.
                                      • Infects users by downloading malicious payloads ( 32 bit and 64 bit executables) that collects information about the victim’s machines including the victim’s email account credentials configured in native email clients.
                                      • Primarily affecting Brazilian users based on the facts – file names e.g. “NF-eletronica”, “visualizar boleto” and also the parameter names used in the data exfiltration.

                                      CloudSquirrel malware typically arrives on the user’s machine as an attachment or a link via email. These attachments, and links will generally involve a ‘..’ extension, such as “NF-eletronica-8457348947..Docx.zip”. The delivery mechanism of CloudSquirrel we saw was being distributed using ServInt’s Jelastic Platform-As-A-Service(PaaS). Jelastic redirects to the CloudApp cloud platform which in turn uses Amazon AWS for its backend cloud services as shown in Figure 1.

                                      CSFigure1

                                      Figure 1: CloudSquirrel delivery mechanism

                                      The downloaded sample “NF-eletronica-8457348947..Docx.zip” (md5 – F23E27F452C523D95D06371922531C48) is a zip archive that contained a JAR file “NF-eletronica-8457348947..Docx.jar” (md5 – A32F45F7B24FBE474816710BBDB046A6). If the user has not allowed viewing of file extensions in their operating system folder options, the sample would be displayed as “NF-eletronica-8457348947..Docx” without the .jar extension. This tricks the user and makes them believe it is a document file.

                                      Analysis of the JAR file

                                      We decompiled the JAR file and the main class file “vvbdhu.class” contained a list of hard-coded URLs in its code, as shown in Figure 2 below:

                                      CSfigure2

                                      Figure 2: URLs present in vvbhdu.class

                                      Three of these URLs referred to Dropbox, while another referred to an IP address. These mp4 files were in fact in plain text format and each of them contained list of URLs, as shown in Figure 3 and Figure 4.

                                      CSfigure3

                                      Figure 3: URLs in xxxconfg.mp4

                                      CSfigure4

                                      Figure 4: URLs in xxxconf1.mp4 , xxxconf2.mp4 and xxxconf4.mp4

                                      At the time of this blog’s publishing, the IP 45.63.23[.]187 was down, and not serving any payload. Since the IP is down, the malware makes an attempt to download the files from the URLs listed with IP 45.32.186[.]249 sequentially. As soon as it downloads a file successfully, it moves to the next stage of execution. Listed below in Figure 5 is the screenshot of malicious server hosting the files.

                                      CSfigure5

                                      Figure 5: Files present inside directory /clientes/dados at the website 45.32.186[.]249

                                      The files stark1.pdf, stark2.pdf, stark3.pdf and stark4.pdf have the extension .pdf but are not real PDF files. They are executable files encrypted with the Data Encryption Standard (DES) algorithm which we decrypted using the code present in the vvbhdu.class file shown in Figure 6.

                                      CSfigure6

                                      Figure 6: Encrypt and decrypt routines using DES algorithm referred in vvbhdu.class

                                      The vvbhdu.class file also referred to a key “squirrel123” in its code which is used to decrypt the files as shown in Figure 7.

                                      CSfigure7

                                      Figure 7: Static key “squirrel123” used for encryption and decryption referred in vvbhdu.class

                                      We made an attempt to manually decrypt the files using the key “squirrel123” as shown in Figure 7, but were unsuccessful. Since a DES key is typically 8 bytes long, we tried with “squirrel” and successfully decrypted the files. In Java, though the DES key is more than 8 bytes long, it considers only the first 8 bytes due to which the execution of the JAR file worked perfectly without giving an exception.

                                      Using the key “squirrel”, the encrypted files were decrypted to the following executables with predefined names OutFileHome.exe, OutFileBreak.exe, Ifgtray.exe and OIgfNswv.exe as shown in Figure 8. These files are saved under “%APPDATA%” in random folder name.

                                      CSfigure8

                                      Figure 8: Predefined executable names present in the class file

                                      Analysis of the 4 dropped executable files

                                      The following Table 1 provides additional details around the 4 decrypted files.

                                      File nameMD5ApplicationPacker
                                      IgfTray.exe6276CB1C74D736BC493D5474C04C478132-bit ExecutableVMProtect
                                      OIgfNswv.exeF7DF2D29EDF85E7A05C90474FD4B9BE732-bit ExecutableVMProtect
                                      OutFileBreak.exeD1C35FF526FC5B5866B889D9957CA36164-bit ExecutableVMProtect
                                      OutFileHome.exe60336413E419C2EA5E215F1A32061E4064-bit Executable

                                      Table 1: Details of the dropped files from the execution of NF-eletronica-8457348947..Docx.jar

                                      OutFileHome.exe

                                      We did not observe any activity performed by OutfileHome.exe as shown in Figure 9. The sample is likely a benign file that has the icon and properties of Windows notepad Application.

                                      CSfigure9

                                      Figure 9: Message displayed on execution of OutFileHome.exe

                                      Ifgtray.exe

                                      Upon execution of Ifgtray.exe, it dropped two additional utility executables, VIEW.exe and VIEWS.exe related to Nirsoft, a website that provides freeware utilities,  in the %temp% directory with details as shown in Table 2, below.

                                      File nameMD5Application
                                      VIEW.exe5F6E36DC418B9EF021D7AD958549722C32-bit Executable
                                      VIEWS.exe5E59D5F0EEB20FA9F598D56284FADA9832-bit Executable

                                      Table 2: Details of the dropped files from the execution of Igftray.exe

                                      VIEW.exe is a OutlookAddressBookView utility that displays the details of all recipients stored in the address books of Microsoft Outlook.

                                      VIEWS.exe is an e-mail password recovery utility that reveals the passwords and other account details stored for various accounts that are configured on the local email clients/applications on the victim’s machine. Figure 10 shows the properties of the two utility executables. Figure 11 and 12 show the screenshots when the two utility executables are executed.
                                      CSfigure10

                                      Figure 10: Nirsoft Email Password-Recovery and OutlookAddressBookView utility properties

                                      CSfigure11

                                      Figure 11: VIEW.exe.Outlook Address Book View window displayed on execution

                                      CSfigure12

                                      Figure 12: VIEWS.exe.Email Password-Recovery window displayed on execution

                                      The data collected by the utility executables VIEW.exe and VIEWS.exe are uploaded to the C&C server at 146.185[.]136.31 as shown in Figure 13.

                                      CSfigure13

                                      Figure 13: Data sent to the C&C server at IP 146.185[.]136.31

                                      Figure 13 shows the file with the name in the format SMTP_MACHIENAME_NUMBER.DAT containing the exfiltrated data and being uploaded to C&C server IP, http://146.185.136[.]31/book/index.php

                                      OutFileBreak.exe

                                      Upon execution of OutFileBreak.exe, the details of the victim’s machine are sent to another C&C server at 81.4.108[.]247 as shown in Figure 14.

                                      CSfigure14

                                      Figure 14: Data exfiltration to the command and control server at IP 81.4.108[.]247

                                      The following are the details of the data being sent to the command and control server:

                                      NOME – Machine Name, SO – Operating System Software, DATA – Date, IDIOMA – Language, ANTI – Antivirus, etc. as shown in Figure 14.

                                      OIgfNswv.exe

                                      Upon execution of OIgfNswv.exe, the sample creates mutex BaseNamedObjects[{1B765A84-BFC1-4B49-8FF5-0B5F9E247CFE}] and drops randomly named VBS files which attempts to download additional C&C configuration data from the URL shown in Figure 15.

                                      CSfigure15

                                      Figure 15: VBS file dropped by OIgfNswv.exe referring to URL hosting additional C&C configuration data.

                                      Figure 16 shows all the URLs that the VBS script attempts to download the C&C configuration data. At the time of writing since the IP 82.196.6[.]25 was down.

                                      CSFigure16

                                      Figure 16: All URLs that are part of the VBS files dropped by OIgfNswv.exe

                                      OIgfNswv.exe later deletes the other files OutFileHome.exe, OutFileBreak.exe, Ifgtray.exe which are present in the folder.

                                      The analysis of the 4 dropped executable files and their capabilities indicate that the intent of the CloudSquirrel malware was to steal and exfiltrate data especially the data related to the usernames and corresponding passwords for email accounts configured in any of the email clients/applications.

                                      Hunting for the CloudSquirrel campaign

                                      A search using popular search engines based on the some of the keywords seen in the decompiled code of the JAR file pointed us to an article from a JAVA web tutorial website. We suspect that the malware author copied this exact code which is used for encryption and decryption with DES from the example on this website. We spotted similar strains of this malware and identified several samples in the wild. An interesting finding we observed during the analysis of all these samples was related to the size of the JAR files which ranged from 3 KB to 6 KB. After investigating the JAR samples, we suspect that the CloudSquirrel malware author has been working through multiple iterations of the malware and adding additional capabilities during each iteration. As an example, one of the malicious JAR file with md5  D037294DCD0AC7B7107C89CADEA7EE35 when decompiled generated capital.class file which did not contain any Dropbox links as shown in Figure 17. However, usage of the key “squirrel123” and the DES encryption/decryption code was the same.

                                      CSFigure17

                                      Figure 17: Absence of Dropbox URLs in one of the samples of CloudSquirrel

                                      A majority of the JAR files related to CloudSquirrel downloaded the malicious payloads for performing data exfiltration. The malicious files were packed with VMProtect packer with variations in the hashes possibly to thwart antivirus detection.

                                      As we continued to track this campaign, we noticed the URL which was initially serving the CloudSquirrel payload NF-eletronica-8457348947..Docx.jar started serving another payload NF-eletronica-8457348947..Docx.exe (md5 – 1DAB898C884A4B984985FABBE0F22B3F) which is a downloader compiled in Visual Basic. The malicious exe attempted to download additional dropper files from the URLs http://82.196.3[.]170/ava/helpmng.exe and http://82.196.3[.]170/nucomamaonobolso/helpmng.exe. At the time of writing this blog, these URLs were down and not serving any files.

                                      Netskope’s Detection & Remediation

                                      Netskope Active Threat Protection detects the CloudSquirrel malware files as follows:

                                      MALWAREMD5
                                      Gen:Variant.Zsy.1982761dab898c884a4b984985fabbe0f22b3f
                                      Gen:Variant.Symm.661048f7789042583ccb0729abbac6d6a1608
                                      Gen:Variant.Symm.6503088ecc913e5f663451e701225377c949c
                                      Gen:Variant.Symm.661046276cb1c74d736bc493d5474c04c4781
                                      Backdoor.Generckd.33840951cff73957b55019ae8e046e1e0b62467
                                      Backdoor.Generckd.3379060a32f45f7b24fbe474816710bbdb046a6
                                      Backdoor.Generckd.3382089f7df2d29edf85e7a05c90474fd4b9be7
                                      Backdoor.Generckd.33842098e4f3f2c65bbdb04861ec10c438615dd
                                      Backdoor.Generckd.3381526b293fbf215658016a53e7f29ca9db3d9
                                      Backdoor.Generckd.3380714dc25540a1957aa6406643eb7f19b7cbf
                                      Backdoor.Generckd.33650340bd2ea285213859378487859bace0c12
                                      Backdoor.Generckd.33650235e9a105c250b288ad2e4c100f1db7abb
                                      Backdoor.Backdoor.Downloadr.RT3eb68685746c80739a6cb87584122d33
                                      Gen:Variant.Symm.661043c445c444c909e5359fa8c4972fd2245
                                      Gen:Variant.Symm.66730c57d7381147cd3d1a6635d860c97d9a0
                                      Backdoor.Backdoor.Dlf.AASQd1c35ff526fc5b5866b889d9957ca361
                                      PE.PE.Mailpassviw.G5e59d5f0eeb20fa9f598d56284fada98
                                      Backdoor.Backdoor.Dlf.AASQ841d1f4c2f091cab12ca1447523d52fa
                                      Backdoor.Backdoor.Dlf.AASQaa5699aeadd6044b7e8a7e53f37ede33
                                      Backdoor.Backdoor.Dlf.AASQ272c2175a9c770f8701a782a905377f6
                                      Backdoor.Generckd.34260019e16806e69a0e6e6366306a2d740d863

                                      The Netskope Active Platform is the only product that can provide deep insight into cloud apps. A customer can effectively block the suspicious files moving in and out of multiple cloud apps. In the case of CloudSquirrel, customers can leverage the custom DLP rule to detect and block files from being downloaded/uploaded that have the following extensions “..Docx.zip”, “..Docx.jar”, “__Docx.jar”,  “(docx)-pdf.jar”, ”(XLS)-xml4.jar” and also detect files that are within container files (zip, jar, tar, gzip, etc.) having the following“..Docx.jar”, “__Docx.jar” and “..”  in filenames. These policy alerts appear as shown in Figure 18 below:
                                      CSfigure18

                                      CSfigure19

                                      Figure 18: Policy alerts indicating suspicious files being transferred via Cloud applications.

                                      Netskope also notified the cloud app vendors ServInt, CloudApp, Amazon AWS, and Dropbox to take down the necessary files and URLs related to CloudSquirrel. Please contact us for the IOCs, additional details, or any other consultation related to CloudSquirrel.

                                      Summary Observations

                                      Malware authors are aggressively using cloud apps in various stages of the malware attack kill chain. The CloudSquirrel campaign highlights the use of cloud apps for hosting drive-by-download files and, most importantly, to host command and control configuration data. A significant motivation for malware authors to use cloud apps (especially mainstream ones) is due to the fact that many enterprises lack visibility into SSL traffic by traditional perimeter security vendors like firewalls and proxies. Enterprises – many of whom need to offer access to popular cloud services – are caught between a rock and a hard place, and often forced to allow these services in the first place, or at least make exceptions for them if blocked. This makes popular cloud services especially susceptible to the use by malicious actors in the malware attack kill chain.

                                      author image
                                      Ashwin Vamshi
                                      Ashwin Vamshi is a Security Researcher with innate interest in targeted attacks and malwares using cloud services.
                                      Ashwin Vamshi is a Security Researcher with innate interest in targeted attacks and malwares using cloud services.

                                      Mantenha-se informado!

                                      Assine para receber as últimas novidades do Blog da Netskope